Answer:
The answer to your question is va = 8 cm/s, vb = 12.5 cm/s, a = 9 cm/s²
Explanation:
Data
Ta = 0.125 s
Tb = 0.08 s
Δtab = 0.5 s
distance = 1 cm
Process
1.- Calculate va
va = 1/0.125 = 8 cm/s
vb = 1/0.08 = 12.5 cm/s
2.- Calculate Δv
Δv = 12.5 - 8
Δv = 4.5 cm/s
3.- Calculate acceleration
a = Δv / Δt
a = 4.5/0.5
a = 9 cm/s²
 
        
             
        
        
        
That is the answer to the question 
I hope this helps you.
Thank you for your question
 
        
             
        
        
        
By applying Newton's second law of motion;
ma = mg - T
Where,
m = mass; a = downward accelerations (+ve value) or upward acceleration (-ve value); g = gravitational acceleration; T = tension.
For the current case, the velocity is constant therefore,
a = 0
Then,
0 = mg - T
T = mg = 115*9.81 = 1128.15 N
Tension in the cable is 1128.15 N.
        
             
        
        
        
Answer:
older plates that are subducting almost perpendicularly, and when the location is far away from the edge of other tectonic plates, are the most likely areas for copper deposits to form
Explanation:
 
        
             
        
        
        
The horizontal velocity will decrease as it travels.
Hope this helps you!