Answer:
The answer is "case law".
Explanation:
This law is not based on law, but on legislatures, statutes, or legislation, on judgments. Its also used as a different term with common law, which is the collection of precedents as well as power on a specific subject established in previous judicial decisions that are a part of Common law, which is also recognized as case law to establish by the court system based on legal case law.
In a collision, there is a force on both objects that causes an acceleration of both objects; the forces are equal in magnitude and opposite in direction. For collisions between equal-mass objects, each object experiences the same acceleration.
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Answer:
The correct option is a
Explanation:
The alpha particle has the lowest penetrating power of the trio of alpha, beta and gamma particles and can be stopped by a sheet of paper and hence cannot penetrate a human skin. Beta particle has a higher penetrating power than alpha particle (some of it penetrates the human skin and some do not) while the gamma particle has the highest penetrating power (with all of it penetrating the human skin).
From the above description, it can be deduced that the alpha particle will stay and interact with the hand (because of its low penetrating power) as the remaining particles move through the skin.