Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
the correct answer is option C which is 50 units.
Explanation:
given,
two vector of magnitude = 30 units and of 70 units
to calculate resultants vector = \sqrt{a^2+b^2+2 a b cos\theta}
cos θ value varies from -1 to 1
so, resultant vector
=
a = 30 units and b = 70 units
=
= 40 units to 100 units
hence, the correct answer is option C which is 50 units.
Because of the hint we can conclude what equation we need to solve this problem. We have power and duration that means that we need to express energy:
1 joule = 1watt * 1 second
or
E (energy) = P (power) * t (time duration)
E = 350 * 30 = 10500 joules.
<span>A center-seeking force related to acceleration is centripetal force. The answer is letter A. The rest of the choices do not answer the question above.</span>