Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
Answer:
3.7 N/kg
Explanation:
The gravitational strength refers to the amount of gravity acting per unit mass. Hence in this case,
Gravitational Strength = Weight / Mass
= 370 / 100
= <u>3</u><u>.</u><u>7</u><u>N</u><u>/</u><u>k</u><u>g</u>
Answer:
a and b
Explanation:
Hydro static equilibrium holds a star steady and balanced. Whenever a star stops burning hydrogen in its center, there must be evolutionary improvements to maintain equilibrium for the star Of example, if a star's internal pressure and temperature fall, gravity will take over and force the star to contract and heat up, restoring stability. By contrast, if a star's internal pressure and temperature rises, the extra pressure causes the star to widen and cool, restoring balance.
so, according to above explanation options a and b both are true
a) A small increase in the star's internal pressure and temperature causes the star's outer layers to expand and cool.
b) A small decrease in the star's internal pressure and temperature causes the star's outer layers to contract and heat up.
(1,500 meters) x (1 sec/330 meters) =
(1,500 / 330) (meters-sec/meters) =
4.55 seconds