1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
8

HELP ASAP!!

Physics
2 answers:
Andreas93 [3]3 years ago
5 0
C. is the correct answer


NeX [460]3 years ago
3 0

the answer would be c

You might be interested in
An 8.2 kg object accelerates at 8.0 m/s^2. What is the acceleration?
ZanzabumX [31]

Answer:

8.0m/s²

Explanation:

meters per second squared is a unit of acceleration so 8.0m/s² is the answer

6 0
2 years ago
One particle has a charge of -1.87 x 10-9 C, while another particle has a charge of -1.10 x 10-9 C. If the two particles are sep
bogdanovich [222]

Answer:D 7.41 x 10-6 N

Explanation: AP*X

5 0
3 years ago
The gravitational force between two objects that
leonid [27]

Answer:

The answer to your question is    m₂ = 38.5 kg

Explanation:

Data

distance = d = 2.1 x 10⁻¹ m

Force = 3.2 x 10⁻⁶ N

m₁ = 55 kg

m₂ = ?

G = 6.67 x 10 ⁻¹¹ Nm²/kg²

Process

1.- To solve this problem use Newton's law of Universal Gravitation.

             F = G m₁m₂ / r²

-Solve for m₂

            m₂ = Fr² / Gm₁

2.- Substitution

            m₂ = (3.2 x 10⁻⁶)(2.1 x 10⁻¹)² / (6.67 x 10⁻¹¹)(55)

3.- Simplification

            m₂ = 1.411 x 10⁻⁷ / 3.669 x 10⁻⁹

4.- Result

            m₂ = 38.5 kg

5 0
3 years ago
(a) (i) Find the gradient of f. (ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rat
vitfil [10]

Question:

Problem 14. Let f(x, y) = (x^2)y*(e^(x−1)) + 2xy^2 and F(x, y, z) = x^2 + 3yz + 4xy.

(a) (i) Find the gradient of f.

(ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rate is f decreasing?

(b) (i) Find the gradient of F.

(ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.

Answer:

The answers to the question are

(a) (i)  the gradient of f =  ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) The direction in which f decreases most rapidly at the point (1, −1), ∇f(x, y) = -1·i -3·j is the y direction.

The rate is f decreasing is -3 .

(b) (i) The gradient of F is (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k is  ñ∙∇F =  4·x +⅟4 (8-3√3)y+ 9/4·z at (1, 1, −5)

4 +⅟4 (8-3√3)+ 9/4·(-5) = -6.549 .

Explanation:

f(x, y) = x²·y·eˣ⁻¹+2·x·y²

The gradient of f = grad f(x, y) = ∇f(x, y) = ∂f/∂x i+  ∂f/∂y j = = (∂x²·y·eˣ⁻¹+2·x·y²)/∂x i+  (∂x²·y·eˣ⁻¹+2·x·y²)/∂y j

= ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) at the point (1, -1) we have  

∇f(x, y) = -1·i -3·j  that is the direction in which f decreases most rapidly at the point (1, −1) is the y direction.  

The rate is f decreasing is -3

(b) F(x, y, z) = x² + 3·y·z + 4·x·y.

The gradient of F is given by grad F(x, y, z)  = ∇F(x, y, z) = = ∂f/∂x i+  ∂f/∂y j+∂f/∂z k = (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2·i + 3·j −√3·k

The magnitude of the vector 2·i +3·j -√3·k is √(2²+3²+(-√3)² ) = 4, the unit vector is therefore  

ñ = ⅟4(2·i +3·j -√3·k)  

The directional derivative is given by ñ∙∇F = ⅟4(2·i +3·j -√3·k)∙( (2·x+4·y)i + (3·z+4·x)j + 3·y·k)  

= ⅟4 (2((2·x+4·y))+3(3·z+4·x)- √3∙3·y) = 4·x +⅟4 (8-3√3)y+ 9/4·z at point (1, 1, −5) = -6.549

8 0
3 years ago
Which part of a wind-powered system ultimately produces the electricity? A. nacelle B. blade C. turbine D. generator
djverab [1.8K]
<span>The correct answer is: (D) Generator

Explanation:
In wind-powered systems, the wind energy turns the blades around the rotor of a wind turbine. That rotor is connected to a generator that generates electricity. In other words, the kinectic energy of the wind is converted into electrical energy by using the generator in the wind-powered systems.</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • A granite monument has a volume of 25,365.4 cm3. The density of granite is 2.7 g/cm3. Use this information to calculate the mass
    13·1 answer
  • A series RLC circuit is connected to a 3.80 kHz oscillator with a peak voltage of 3.80 V. It consists of a 3.50 mH inductor, a 2
    8·1 answer
  • A 66.5-kg hiker starts at an elevation of 1270 m and climbs to the top of a peak 2660 m high.
    14·1 answer
  • describe what is meant by "a constant change of direction".Identify whether the examples provided show a constant change of dire
    10·1 answer
  • The law of conservation of energy states that energy cannot be<br> vor destroyed.
    12·1 answer
  • A car increases its speed from 20km/hr to 50km/hr in seconds. Its acceleration is _____.
    7·1 answer
  • A state trooper is traveling down the interstate at 20 m/s. He sees a speeder traveling at 50 m/s approaching from behind. At th
    13·1 answer
  • After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by obse
    14·1 answer
  • An inner city revitalization zone is a rectangle that is twice as long as it is wide. The width of the region is growing at a ra
    7·2 answers
  • In Bolt’s fastest 100 meter, he accelerated from the starting block to a speed of 27.8 mi/hr in 9.58 s. What was his acceleratio
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!