The work done to pull the sister back on the swing is equal to the increase in potential energy of the sister:

(1)
where m is the sister's mass, g is the gravitational acceleration and

is the increase in altitude of the sister with respect to its initial position.
By calling

the angle of the chain with respect to the vertical, the increase in altitude is given by

(2)
where L is the length of the chain.
Putting (2) inside (1), we find

from which we can find the mass of the sister:
Ep= mgh
Ep = 40 x 9.8 x 10
Ep = 3920J
Ep = 3900J (2sf)
Answer:
the mass of the truck is 2 kg.
Explanation:
Given;
mass of the car, m₁ = 3 kg
initial velocity of the car, u₁ = 40 m/s
initial velocity of the truck, u₂ = 60 m/s
let the mass of the truck = m₂
Apply the principle of conservation of linear momemtum;
m₁u₁ = m₂u₂
m₂ = (m₁u₁) / u₂
m₂ = (3 x 40) / (60)
m₂ = 2 kg
Therefore, the mass of the truck is 2 kg.
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
First of all, we know that one mole is equal to the atomic number of an element.
The atomic number of gold is <span>197.0g Au
And we need to find 5 moles.
5 * 197.0 g Au = </span><span>985.0g
Grams is used to measure mass.
Answer: </span>985.0g