Answer:
1 bright fringe every 33 cm.
Explanation:
The formula to calculate the position of the m-th order brigh line (constructive interference) produced by diffraction of light through a diffraction grating is:

where
m is the order of the maximum
is the wavelength of the light
D is the distance of the screen
d is the separation between two adjacent slit
Here we have:
is the wavelength of the light
D = 1 m is the distance of the screen (not given in the problem, so we assume it to be 1 meter)
is the number of lines per mm, so the spacing between two lines is

Therefore, substituting m = 1, we find:

So, on the distant screen, there is 1 bright fringe every 33 cm.
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm
Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s