To solve this problem, we will apply the concepts related to the linear deformation of a body given by the relationship between the load applied over a given length, acting by the corresponding area unit and the modulus of elasticity. The mathematical representation of this is given as:

Where,
P = Axial Load
l = Gage length
A = Cross-sectional Area
E = Modulus of Elasticity
Our values are given as,
l = 3.5m
D = 0.028m

E = 200GPa

Replacing we have,




Therefore the change in length is 1.93mm
Answer:
η = 0.667 = 66.7%
Explanation:
The efficiency of the man can be given by the following formula:
η = output/input
where,
η = efficiency of man = ?
output = potential energy gain of the box = Wh
input = work done by man = Fd
Therefore,

where,
W = weight of box = 200 N
h = height gained by box = 1 m
F = force exerted by man = 60 N
d = length of ramp = 5 m
Therefore,

<u>η = 0.667 = 66.7%</u>
Answer:
Explanation:
Given
W amount of work is done on the system such that it acquires v velocity after operation(initial velocity)
According to work energy theorem work done by all the forces is equal to change in kinetic energy of object

where m=mass of object
v=velocity of object
When the object is already have velocity v then the final speed is given by work energy theorem

From 1 and 2 we get



Answer:
the answer is 10 w because it multiples 5x2 and the answer is 10 w because (w stands for work)