To find the temperature it is necessary to use the expression and concepts related to the ideal gas law.
Mathematically it can be defined as

Where
P = Pressure
V = Volume
n = Number of moles
R = Gas constant
T = Temperature
When the number of moles and volume is constant then the expression can be written as

Or in practical terms for this exercise depending on the final temperature:

Our values are given as

Replacing

Therefore the final temperature of the gas is 800K
Answer: A)
Explanation: when an electron is placed in a magnetic field, it experiences a force.
This force is given below as
F=qvB*sinθ
F = force experienced by charge.
q = magnitude of electronic charge
v = speed of electron
B= strength of magnetic field
θ = angle between magnetic field and velocity.
What defines the force exerted on the charge is the angle between the field and it velocity.
If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means
F = qvB * 0 = 0.
The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.
Ionic is where the bonding of elements attract opposites
2.c
3.b
1.a
......................................................................................................................................................
Answer:
a)W= - 720 J
b)ΔU= 330 J
Explanation:
Given that
P = 0.8 atm
We know that 1 atm = 100 KPa
P = 80 KPa
V₁ = 12 L = 0.012 m³ ( 1000 L = 1 m³)
V₂ = 3 L = 0.003 m³
Q= - 390 J ( heat is leaving from the system )
We know that work done by gas given as
W = P (V₂ -V₁ )
W= 80 x ( 0.003 - 0.012 ) KJ
W= - 0.72 KJ
W= - 720 J ( Negative sign indicates work done on the gas)
From first law of thermodynamics
Q = W + ΔU
ΔU=Change in the internal energy
Now by putting the values
- 390 = - 720 + ΔU
ΔU= 720 - 390 J
ΔU= 330 J