1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
15

Zero, a hypothetical planet, has a mass of 5.3 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to

be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of 8.0 x 106 m from the center of Zero, with what initial kinetic energy must it be launched from the surface of Zero?
Physics
1 answer:
Andrej [43]3 years ago
3 0

(a) 3.1\cdot 10^7 J

The total mechanical energy of the space probe must be constant, so we can write:

E_i = E_f\\K_i + U_i = K_f + U_f (1)

where

K_i is the kinetic energy at the surface, when the probe is launched

U_i is the gravitational potential energy at the surface

K_f is the final kinetic energy of the probe

U_i is the final gravitational potential energy

Here we have

K_i = 5.0 \cdot 10^7 J

at the surface, R=3.3\cdot 10^6 m (radius of the planet), M=5.3\cdot 10^{23}kg (mass of the planet) and m=10 kg (mass of the probe), so the initial gravitational potential energy is

U_i=-G\frac{mM}{R}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{3.3\cdot 10^6 m}=-1.07\cdot 10^8 J

At the final point, the distance of the probe from the centre of Zero is

r=4.0\cdot 10^6 m

so the final potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{4.0\cdot 10^6 m}=-8.8\cdot 10^7 J

So now we can use eq.(1) to find the final kinetic energy:

K_f = K_i + U_i - U_f = 5.0\cdot 10^7 J+(-1.07\cdot 10^8 J)-(-8.8\cdot 10^7 J)=3.1\cdot 10^7 J

(b) 6.3\cdot 10^7 J

The probe reaches a maximum distance of

r=8.0\cdot 10^6 m

which means that at that point, the kinetic energy is zero: (the probe speed has become zero):

K_f = 0

At that point, the gravitational potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{8.0\cdot 10^6 m}=-4.4\cdot 10^7 J

So now we can use eq.(1) to find the initial kinetic energy:

K_i = K_f + U_f - U_i = 0+(-4.4\cdot 10^7 J)-(-1.07\cdot 10^8 J)=6.3\cdot 10^7 J

You might be interested in
What is the eccentricity of an ellipse with a foci distance of 50,000,000 km and
inysia [295]

Answer:

25,000,000 Km ;)

Explanation:

5 0
3 years ago
A race car has a centripetal acceleration of 15.625 m/s2 as it goes around a curve. If the curve is a circle with radius 40 m, w
myrzilka [38]
The centripetal acceleration is given by
a_c =  \frac{v^2}{r}
where v is the tangential speed and r the radius of the circular orbit.

For the car in this problem, a_c = 15.625 m/s^2 and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
v= \sqrt{a_c r}= \sqrt{(15.625 m/s^2)(40 m)}=25 m/s
8 0
3 years ago
A man pulls on his dog's leash to keep him from running after a bicycle. Which term best describes this example? Select one: A.
madreJ [45]
C. Negative force. The dog isn't going to learn that way.

6 0
3 years ago
If two planets orbit a star, but planet B is twice as far from the star as planet A, planet A will receive ____ times the flux t
Tresset [83]

Answer:

The nearest plant (A) receives 4 times more radiation from the farthest plant

Explanation:

The energy emitted by the star is distributed on the surface of a sphere, whereby intensity received is the power emitted between the area of ​​the sphere

                I = P / A

               P = I A

The area of ​​the sphere is

               A = 4π r²

Since the amount of radiation emitted by the star is constant, we can write this expression for the position of the two planets

               P = I₁ A₁ = I₂ A₂

               I₁ / I₂ = A₂ / A₁

 Suppose index 1 corresponds to the nearest planet,

            r2 = 2 r₁

            I₁ / I₂ = r₁² / r₂²

            I₁ / I₂ = r₁² / (2r₁)²

            I₁ / I₂ = ¼

           4 I₁ = I₂

The nearest plant (A) receives 4 times more radiation from the farthest plant

7 0
3 years ago
An enconomy car has a mass of 800 kg. What is the weight of the car?
Maksim231197 [3]

Answer:

1763.70 lbs (weight)

Explanation:

Easy converting.

6 0
3 years ago
Read 2 more answers
Other questions:
  • A tennis ball is dropped from 1.65 m above
    9·1 answer
  • We’re measuring the velocity, so that we can find the change in kinetic energy. Where should you place the photogate to measure
    9·1 answer
  • (will mark brainliest)Which of the following has the most potential energy?
    13·2 answers
  • A sound source of frequency f moves with constant velocity (less than the speed of sound) through a medium that is at rest. A st
    9·1 answer
  • How are mass and inertia related?
    5·1 answer
  • A spacecraft that renters the earth’s atmosphere drastically slows down. The amount of kinetic energy the spacecraft has as it r
    11·1 answer
  • Bees obtain food they need from flowers. The flowers benefit by having their pollen dispersed by the bees as they travel from fl
    8·1 answer
  • How does a compass needle respond when a compass is placed within a magnetic field? It aligns in a direction parallel to the fie
    11·2 answers
  • A 3" diameter germanium wafer that is 0.020" thick at 300K has 1.015 x 10^17 As atoms added to it. What is the resistivity of th
    7·1 answer
  •  A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!