Hello!
Explanation:
↓↓↓↓↓↓↓
Density is the amount of mass in a given volume. It's a derived unit of measure. It is equal to mass divided by volume. It's measured in units such as grams per cubic centimeter and grams per milliliter. Density is the ratio of mass to volume. Density is a physical property of an object. It is degree of compactness of a substances. Relative density is used to separate solids, liquids, and gases. The gas in the container rises to the top because it has the least density. The liquids separate into individual layers based on their relative densities. The least dense liquid is on top. The most dense liquid is on bottom. The solids sink to the bottom of the container because they have the greatest density.
Hope this helps!
Thank you for posting your question at here on Brainly.
-Charlie
Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
I dont undarsatnd 2gebwhsanKM<dwkdwndwkjdwnfwkjdnfkwnfwkf
Explanation:
wnkf mnf wnmd