<span>The heat energy is being transferred between the two substances by thermal conduction. Because the hot coffee is at a different temperature to the mug, heat energy flows between them so that they reach thermal equilibrium, or the same temperature. This kind of heat transfer always happens from hotter temperatures to cooler temperatures.</span>
Chemical! physical would be a bruise or a cut.
Answer:
Explanation:
Area of square loop = L²
Flux Φ = area x magnetic field
= L²B
Frequency = f
angular velocity ω = 2πf
a )
Let at time t = 0 , the magnetic field is making 90 degree with the face of the loop
flux through loop = L²B
After time t , coil will turn by angle ω t = 2πft
Flux through the loop = L²B cosω t
Φ (t) = L²B cosω t
= L²B cos2πft
b )
emf induced e
= - d/dt [Φ (t)]
= - d/dt [ L²B cosω t]
= L²B ω sinω t
= L²B 2πf sin2πft
c )
current = e / R
(L²B ω/ R ) sinω t
Power delivered
P(t) = VI ,
VOLT X CURRENT
= AB ω sinω t X ( AB ω/ R ) sinω t
= L⁴B² 4π²f²/R sin²2πft
e )
torque = MB sinω t
τ(t) = i(L²B ) sinω t
= (L²B ω/ R ) sinω t x (L²B ) sinω t
= (L²B )²ω/ R sin²ω t
= (L²B )² 2πf/ R sin²2πft
Answer:
OK + MgBR arrow KBR + MG
Explanation:
I know nothing about this topic, but if it has to be balanced I am pretty certain that's the only balanced equation
Answer:
C. An external downward field is created or an external downward field is removed
Explanation:
As we can see that from the attached figure that the induced current would be counter clockwise. So the field occur because of induced current i.e. out of page. This represent that the current is induced in order to rise the flux out of the direction of the page
Therefore because of the external field, the field out of page & flux would be reducing or the external upward field is eliminated
So option C is correct