Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Answer:
11.7 m/s
Explanation:
To find its speed, we first find the acceleration of the center of mass of a rolling object is given by
a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²
a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)
= 9.8 m/s²sin4(1 + 2/3)
= 9.8 m/s²sin4 × (5/3)
= 1.14 m/s²
To find its speed v after rolling for 60 m, we use
v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m
v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s