Answer:
The car would travel after applying brakes is, d = 14.53 m
Explanation:
Given that,
The time taken to apply brakes fully is, t = 0.5 s
The velocity of the car, v = 29.06 m/s
The distance traveled by the car in 0.5 s, d = ?
The relation between the velocity, displacement, and time is given by the formula
d = v x t m
Substituting the values in the above equation,
d = 29.06 m/s x 0.5 s
= 14.53 m
Therefore, the car would travel after applying brakes is, d = 14.53 m
Answer:
i think it is iron
Explanation:
its the only one that makes sense to me
Potential energy is energy stored in an object. kinetic energy is energy of motion
Explanation:
Given that,
Distance, s = 47 m
Time taken, t = 8.6 s
Final speed of the truck, v = 2.3 m/s
Let u is the initial speed of the truck and a is its acceleration such that :
.............(1)
Now, the second equation of motion is :

Put the value of a in above equation as :




u = 8.63 m/s
So, the original speed of the truck is 8.63 m/s. Hence, this is the required solution.
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.