1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
2 years ago
11

What is the difference between wind energy and solar energy?

Physics
1 answer:
Viktor [21]2 years ago
8 0

Answer: Wind energy is powered by wind, and solar energy is powered by the Sun.

You might be interested in
How do you answer this. Need help ASAP. Offering 20 points !!!
Temka [501]

in this since your volume remains at a constant you'll need to use Gay-Lussacs law, p1/t1=p2/t2.

your temp should be converted in kelvin

variables:

p1=3.0×10^6 n/m^2

t1= 270k

just add 273 to your celcius

p2= ? your solving for this

t2= 315k

then you set up the equation

(3.0×10^6)/270= (x)(315)

you then cross multiply

(3.0×10^6)315=270x

distribute the 315 to the pressure.

9.45×10^8=270x then you divide 270 o both sides to get

answer

3.5×10^6 n/m^2

7 0
3 years ago
A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at
yan [13]

Answer:

a) s_{T} = 30\,m, b) t = 5\,min, c) \Delta t = 6.667\,s, d) \Delta s_{R} = 33.333\,m, e) t' = 11.667\,s, f) The rabbit won the race.

Explanation:

a) As turtle moves at constant speed, its position is determined by the following formula:

s_{T} = v_{T}\cdot t

Where:

t - Time, measured in seconds.

v_{T} - Velocity of the turtle, measured in meters per second.

s_{T} - Position of the turtle, measured in meters.

Then, the position of the turtle when the rabbit starts to run is:

s_{T} = \left(0.5\,\frac{m}{s} \right)\cdot (60\,s)

s_{T} = 30\,m

The position of the turtle when the rabbit starts to run is 30 meters.

b) The time needed for the turtle to finish the race is:

t = \frac{s_{T}}{v_{T}}

t = \frac{150\,m}{0.5\,\frac{m}{s} }

t = 300\,s

t = 5\,min

The time needed for the turtle to finish the race is 5 minutes.

c) As rabbit experiments a constant acceleration until maximum velocity is reached and moves at constant speed afterwards, the time required to reach such speed is:

v_{R} = v_{o,R} + a_{R}\cdot \Delta t

Where:

v_{R} - Final velocity of the rabbit, measured in meters per second.

v_{o,R} - Initial velocity of the rabbit, measured in meters per second.

a_{R} - Acceleration of the rabbit, measured in \frac{m}{s^{2}}.

\Delta t - Running time, measured in second.

\Delta t = \frac{v_{R}-v_{o,R}}{a_{R}}

\Delta t = \frac{10\,\frac{m}{s}-0\,\frac{m}{s}}{1.50\,\frac{m}{s^{2}} }

\Delta t = 6.667\,s

The time taken by the rabbit to reach maximum speed is 6.667 s.

d) On the other hand, the position reached by the rabbit when maximum speed is reached is determined by the following equation of motion:

v_{R}^{2} = v_{o,R}^{2} + 2\cdot a_{R}\cdot \Delta s_{R}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

Where \Delta s_{R} is the travelled distance of the rabbit from rest to maximum speed.

\Delta s_{R} = \frac{\left(10\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(1.50\,\frac{m}{s^{2}} \right)}

\Delta s_{R} = 33.333\,m

The distance travelled by the rabbit from rest to maximum speed is 33.333 meters.

e) The time required for the rabbit to finish the race can be determined by the following expression:

t' = \frac{\Delta s_{R}}{v_{R}}

t' = \frac{150\,m-33.333\,m}{10\,\frac{m}{s} }

t' = 11.667\,s

The time required for the rabbit from rest to maximum speed is 11.667 seconds.

f) The animal with the lowest time wins the race. Now, each running time is determined:

Turtle:

t_{T} = 300\,s

Rabbit:

t_{R} = 60\,s + 6.667\,s + 11.667\,s

t_{R} = 78.334\,s

The rabbit won the race as t_{R} < t_{T}.

7 0
3 years ago
An inflatable raft (unoccupied) floats down a river at an approximately constant speed of 5.6 m/s. A child on a bridge, 71 m abo
saveliy_v [14]

Answer:

21.28 m

Explanation:

height, h = 71 m

velocity of raft, v = 5.6 m/s

let the time taken by the stone to reach to raft is t.

use second equation of motion for stone

h = ut + \frac{1}{2}at^{2}

u = 0 m/s, h = 71 m, g = 9.8 m/s^2

71 = 0 + 0.5 x 9.8 x t^2

t = 3.8 s

Horizontal distance traveled by the raft in time t

d = v x t = 5.6 x 3.8 = 21.28 m

3 0
3 years ago
What two properties show that the drink is a fluid ( girl drinking fruit punch out of a clear glass cup with a straw.)
Ainat [17]
It takes the shape of the cup and it can be sucked through a straw 
3 0
3 years ago
Read 2 more answers
Which dog has the most kinetic energy?
Nastasia [14]

Answer:

I'm pretty sure it'sssss A

4 0
3 years ago
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    12·1 answer
  • A planet has two
    7·1 answer
  • The temperature -273°C is___.
    8·2 answers
  • _____cells do not contain a nucleus
    6·1 answer
  • How does the density of an object that sinks into a fluid compare to the density of a fluid
    11·1 answer
  • 9. Mike rides his motorcycle a distance of 10000 meters for 500 seconds, What was is average speed?​
    7·2 answers
  • How did the police catch the Golden State Killer?
    6·1 answer
  • First use of electricity<br> Greece<br> Itally<br> Allentwon<br> California
    11·1 answer
  • If a ball is rolling at a velocity of 1.5 m/s and has a momentum of 10.0 kg times m/s, what is the mass of the ball?
    5·1 answer
  • Find out how the position of the Sun would be different at 12:00 midday in December than in June. What path would the sun take f
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!