1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
4 years ago
15

The state of plane strain on an element is:

Engineering
1 answer:
balu736 [363]4 years ago
4 0

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

You might be interested in
Can someone tell me what car year and model this is please
Arlecino [84]

Answer:

i think 1844

Explanation:

5 0
3 years ago
Read 2 more answers
Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.
Rufina [12.5K]

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

6 0
3 years ago
Railroad tracks made of 1025 steel are to be laid during the time of year when the temperature averages 4C (40F). Of a joint spa
DENIUS [597]

Answer:

41.5° C

Explanation:

Given data :

1025 steel

Temperature = 4°C

allowed joint space = 5.4 mm

length of rails = 11.9 m

<u>Determine the highest possible temperature </u>

coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C

Applying thermal strain ( Δl / l )  = ∝ * ΔT

                                    ( 5.4 * 10^-3 / 11.9 )  = 12.1 * 10^-6 * ( T2 - 4 )

∴  ( T2 - 4 ) =  ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6

hence : T2 = 41.5°C

8 0
3 years ago
Calculate the convective heat-transfer coefficient for water flowing in a round pipe with an inner diameter of 3.0 cm. The water
olasank [31]

Answer:

h = 10,349.06 W/m^2 K

Explanation:

Given data:

Inner diameter = 3.0 cm

flow rate  = 2 L/s

water temperature 30 degree celcius

Q = A\times V

2\times 10^{-3} m^3 = \frac{\pi}{4} \times (3\times 10^{-2})^2 \times velocity

V = \frac{20\times 4}{9\times \pi} = 2.83 m/s

Re = \frac{\rho\times V\times D}{\mu}

at 30 degree celcius = \mu = 0.798\times 10^{-3}Pa-s , K  = 0.6154

Re = \frac{10^3\times 2.83\times 3\times 10^{-2}}{0.798\times 10^{-3}}

Re = 106390

So ,this is turbulent flow

Nu = \frac{hL}{k} = 0.0029\times Re^{0.8}\times Pr^{0.3}

Pr= \frac{\mu Cp}{K} = \frac{0.798\times 10^{-3} \times 4180}{0.615} = 5.419

\frac{h\times 0.03}{0.615}  = 0.0029\times (1.061\times 10^5)^{0.8}\times 5.419^{0.3}

SOLVING FOR H

WE GET

h = 10,349.06 W/m^2 K

6 0
4 years ago
HELP PLEASE
Sveta_85 [38]

..........23÷357=0.0644257703........

8 0
2 years ago
Other questions:
  • A hanging wire made of an alloy of nickel with diameter 0.19 cm is initially 2.8 m long. When a 59 kg mass is hung from it, the
    15·1 answer
  • The properties of the air in the inlet section with A1 = 0.25ab m2 in a converging-diverging channel are given as U1 = 25a,b m/s
    8·1 answer
  • Parting tool purpose
    13·1 answer
  • Give three examples of how engineering has made human life better in your opinion.
    13·1 answer
  • What are some quality assurance systems
    11·1 answer
  • A pulse-jet baghouse is desired for a finished cement plant. Calculate the number of bags required to filter 500 m3/min of air w
    7·1 answer
  • For the floor plan shown, if a = sm b= 8m, specify type of Load on Beam AHS<br> D<br> B В
    10·1 answer
  • Select the correct answer.
    6·1 answer
  • A force is a push or pull in A.a circle B.an arc C.a straight line
    6·1 answer
  • If Ella decided to become a children’s doctor, what career cluster would she belong in?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!