1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
4 years ago
15

The state of plane strain on an element is:

Engineering
1 answer:
balu736 [363]4 years ago
4 0

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

You might be interested in
Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
gladu [14]

Answer:

The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.

Explanation:

For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.

Q = π(ΔPR⁴/8μL)

where Q = volumetric flowrate

ΔP = Pressure drop across the pipe

μ = fluid viscosity

L = pipe length

If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe

ΔP = μ(8QL/πR⁴)

ΔP = Kμ

K = (8QL/πR⁴) = constant (for this question)

ΔP = Kμ

K = (ΔP/μ)

So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).

μ₁ = (μ/2)

The new pressure drop (ΔP₁) is then

ΔP₁ = Kμ₁ = K(μ/2)

Recall,

K = (ΔP/μ)

ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)

Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.

Hope this Helps!!!

4 0
3 years ago
For unrestrained cube made from linear, isotropic, homogeneous material the temperature increase causes strain in_____ direction
LenKa [72]

Answer: The answer is four; four

Explanation: This is because of the mixture of material used and the number of directions it causes strain I directly proportional to the number of times it causes stress.

7 0
3 years ago
A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is imp
Nikolay [14]

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

6 0
3 years ago
technician a says that a gasoline engine is designed to operate at near or maximum speed for long periods without damage. techni
Vinil7 [7]

we can see that the correct person here will be Technician B who says that a diesel engine is designed to operate at near or maximum speed for long periods without damage.

<h3>What is a diesel engine?</h3>

A diesel engine is actually known to be an engine that makes use of diesel as its fuel. In other words, diesel engines run on diesel.

We see here that a diesel engine is actually designed to work for a very time on near or maximum speed without damage. This is true because the diesel fuel has that strength.

Also, diesel engines may be designed as two or four stroke cycles.

Learn more about diesel engine on brainly.com/question/13146091

#SPJ1

3 0
2 years ago
Describe the placement of the views in a multi view drawing
Marianna [84]

Answer:

like a mountain place thanks #careonlearning

8 0
3 years ago
Other questions:
  • 8. Explain how a duo-servo brake assembly works to provide great braking ability.
    11·1 answer
  • If 20 kg of iron, initially at 12 °C, is added to 30 kg of water, initially at 90 °C, what would be the final temperature of the
    6·1 answer
  • An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
    8·1 answer
  • This manometer is used to measure the difference in water level between the two tanks.
    10·1 answer
  • A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) h
    9·1 answer
  • The air loss rate for a straight truck or bus with the engine off and the brakes
    11·1 answer
  • Tech A says that coolant circulates through some intake manifolds to help warm them up. Tech B says that some intake manifolds u
    13·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 783°C. The energy for vacancy formation is 0.95 eV/atom,
    11·1 answer
  • Technician A says that the starter solenoid switches the high current on and off. Technician B says that the solenoid on the sta
    5·1 answer
  • which of the following is not a general education elective area? group of answer choices humanities/fine arts social/behavioral
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!