1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
4 years ago
15

The state of plane strain on an element is:

Engineering
1 answer:
balu736 [363]4 years ago
4 0

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

You might be interested in
Can somebody help me
masha68 [24]
I think the answer is D .
6 0
3 years ago
2 times 4 - 3 times 5​
Papessa [141]

Answer:

<h3>The answer is - 7</h3>

Explanation:

The statement above is written as

2 × 4 - 3 × 5

8 - 15

= - 7

Hope this helps you

4 0
4 years ago
Read 2 more answers
What is an aqueduct?
Lady bird [3.3K]
Hi there!

1. C) Ancient Structure

2. A) Iterate

3. A) NYC

The first two, I’m sure the third i’m not.

Sorry if I’m wrong and hope this helps !
6 0
4 years ago
Read 2 more answers
Underground water is to be pumped by a 78% efficient 5- kW submerged pump to a pool whose free surface is 30 m above the undergr
maksim [4K]

Answer:

a) The maximum flowrate of the pump is approximately 13,305.22 cm³/s

b) The pressure difference across the pump is approximately 293.118 kPa

Explanation:

The efficiency of the pump = 78%

The power of the pump = 5 -kW

The height of the pool above the underground water, h = 30 m

The diameter of the pipe on the intake side = 7 cm

The diameter of the pipe on the discharge side = 5 cm

a) The maximum flowrate of the pump is given as follows;

P = \dfrac{Q \cdot \rho \cdot g\cdot h}{\eta_t}

Where;

P = The power of the pump

Q = The flowrate of the pump

ρ = The density of the fluid = 997 kg/m³

h = The head of the pump = 30 m

g = The acceleration due to gravity ≈ 9.8 m/s²

\eta_t = The efficiency of the pump = 78%

\therefore Q_{max} = \dfrac{P \cdot \eta_t}{\rho \cdot g\cdot h}

Q_{max} = 5,000 × 0.78/(997 × 9.8 × 30) ≈ 0.0133 m³/s

The maximum flowrate of the pump Q_{max} ≈ 0.013305 m³/s = 13,305.22 cm³/s

b) The pressure difference across the pump, ΔP = ρ·g·h

∴ ΔP = 997 kg/m³ × 9.8 m/s² × 30 m = 293.118 kPa

The pressure difference across the pump, ΔP ≈ 293.118 kPa

6 0
3 years ago
The importance of reading a circuit diagram to interpret a wiring diagram?
Nataly [62]

Answer:

The ability to read electrical schematics is a really useful skill to have. To start developing your schematic reading abilities, it's important to memorize the most common schematic symbols. ... You should also be able to get a rough idea of how the circuit works, just by looking at the schematic.

Explanation:

7 0
3 years ago
Other questions:
  • A ball slowly starts to roll downhill, but its speed increases as it rolls. How are the ball's speed and energy related? - Why d
    9·1 answer
  • Manufacturing
    11·1 answer
  • I have a resistor connected to a power supply that delivers a fixed voltage for any current (up to some maximum current). With a
    8·1 answer
  • What energy type is represented in the picture?
    6·2 answers
  • A mechanism is a device that transmits movement so the output movement is different from the input movement. identify three ways
    5·1 answer
  • Which of the following is not part of a connecting
    10·1 answer
  • Select the correct answer from each drop-down menu.
    14·1 answer
  • (D)<br> 13. Describe the differences between an impact socket and a conventional socket.
    6·1 answer
  • What is the minimum level of isolation required on T2 such that T2 never sees a value of zero in its output
    10·1 answer
  • Question 2: write a program for smart garage system using:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!