There are 3.98 × 10^23 atoms of oxygen in the sample.
Given that;
1 mole of Mo(NO3)6 contains 6.02 × 10^23 atoms of Nitrogen
x moles of Mo(NO3)6 contains 2.22 x 10^22 atoms of nitrogen
x = 1 mole × 2.22 x 10^22 atoms/6.02 × 10^23 atoms
x = 0.0368 moles
The number of oxygen atoms in the sample is given by; 0.0368 × 6.02 × 10^23 × 18
Therefore, there are 3.98 × 10^23 atoms of oxygen in the sample.
Learn more: brainly.com/question/9743981
<h2>
Answer: 6 moles</h2>
<h3>
Explanation:</h3>
3 H₂ + N₂ → 2 NH₃
↓ ↓
4 mol 3 mol
Since the moles of N₂ is the smaller of the two reactants, then N₂ is the limiting factor (the reactant that will decide how much ammonia is produced since it has the smaller amount of moles). ∴ we have to use it in calculating the number of moles of ammonia
The mole ratio of N₂ to NH₃ based on the balanced equation is 1 to 2.
∴ the moles of NH₃ = moles of N₂ × 2
= 3 moles × 2
= 6 moles
Answer:
Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay, beta decay, and gamma decay, all of which involve emitting one or more particles or photons.
Explanation: