Answer:
1. Galvanic oxidation. Example is the corrosion of aluminium wires when in contact with copper wires under wet conditions.
2. Rainwater or Damp/moist air
3. Chromium-plated steel screws or stainless steel screws or galvanized steel screws
Explanation:
1. Galvanic oxidation or corrosion occurs when two different metals with different electrode potentials are brought into contact with each other by means of an electrolyte (usually a aqueous solution), such that a redox reaction occurs leading to one metal with the more negative electrode potential (the anode) becoming oxidized, while the other less negative potential (the cathode) is reduced.
In order for galvanic corrosion to occur, three elements are required.
i. Two metals with different corrosion potentials (anode and cathode)
ii. Direct metal-to-metal electrical contact
iii. A conductive electrolyte solution (e.g. water) must connect the two metals on a regular basis.
For example oxidation (corrosion) of aluminium wires when in contact with copper wire under wet conditions.
2. The most likely electrolyte will be rainwater containing dissoved solutes (if the panel is in an exposed part of the house) or damp/moist air.
3. From the table, the most likely screw will be chromium-plated steel screws or stainless steel (made of iron and nickel) screws or galvanized steel (zinc-plated) screws.
All these possible screw components have a more negative electrode potential than copper. Thus they will serve as the anode in a galvanic oxidation with copper.
This reaction is called the electrolysis of water. The balanced reaction is:
2H2O = 2H2 + O2
We are given the amount of O2 produced from the electrolysis reaction. This will be the starting point of our calculation.
50.00 grams O2 ( 1 mol O2 / 32 grams O2) ( 2 mol H2O / 1 mol O2) ( 18.01 g H2O / 1 mol H2O ) = 56.28 g H2O
Answer:
Now "q" is the heat and energy is the capacity of any object or body ton perform any work. So we can relate them if we take the term specific heat in consideration.
As specific heat is the the amount of heat required to raise the temperature of an object in specific from one degree Celsius, for ice it is 2.108 kJ/kgK.
Explanation:
- c = specific heat capacity,
- ΔT = change in temperature
So, we have:
- It is the ratio of the amount of heat energy transferred to an object to the resulting increase in temperature of the object.
Answer:
Nuclear reaction takes place at the nucleus whereas chemical reaction involves valence electrons
Explanation:
Hope this helps! If you dont understand balancing equations in general, say so in the comments, I’m happy to help