The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418
Answer:
31.78 grams
25.55%
Explanation:
The balanced reaction for ammonium chloride with calcium oxide will be:
2NH4Cl + Ca(OH)2 ---> CaCl2 + 2NH3 + 2H2O
The molecular weight for ammonium chloride(NH4Cl ) is 53.49g/mol, while the molecular weight for ammonium(NH3) is 17g/mol. The number of theoretical yield of ammonia from 100g of ammonium chloride will be:
100g / (53.49g/mol) * 2/2 * 17g/mol= 31.78 grams
If the actual yield is 8.12g, the percent yield will be: 8.12g/31.78g * 100% =25.55%
Answer:
480.6 g
Explanation:
Given data:
Number of molecules of methanol = 9.01 ×10²⁴
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
9.01 ×10²⁴molecules ×1 mol /6.022 × 10²³ molecules
1.5 ×10¹ mol
15 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 15 mol × 32.04 g/mol
Mass = 480.6 g
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol. This means for every mole of ice we melt we must apply 6.02 kj of heat. We can calculate the heat needed with the following equation:
Q = N x ΔH
where:
Q = heat
N = moles
ΔH = enthalpy
In this problem we would like to calculate the heat needed to melt 35 grams of ice at 0 °C. This problem can be broken into three steps:
1. Calculate moles of water
2. multiply by the enthalpy of fusion
3. Convert kJ to J.
Step 1 : Calculate moles of water
![[ 75g ] x (\frac{1 mol}{18.02g} ) =](https://tex.z-dn.net/?f=%5B%2075g%20%5D%20x%20%28%5Cfrac%7B1%20mol%7D%7B18.02g%7D%20%29%20%3D)
Step 2 : Multiply by enthalpy of fusion
Q = N × ΔH = <em> [ Step 1 Answer ]</em> × 6.02 =
Step 3 : Convert kJ to J
![[ Step 2 Answer ] x (\frac{1000j}{1kJ} ) =](https://tex.z-dn.net/?f=%5B%20Step%202%20Answer%20%5D%20x%20%28%5Cfrac%7B1000j%7D%7B1kJ%7D%20%29%20%3D)
Finally rounding to 2 sig figs (since 34°C has two sig figs) we get
Q Would Equal ____
Answer:
5-chloro-1,3-cyclopentadiene
Explanation:
5-chloro-1,3-cyclopentadiene will react more slowly in an SN1 reaction. ( i.e. No reaction as the product is unstable ) attached is the representation of the rate of reaction of both Halides which shows that 5-chloro-1,3-cyclopentadiene reacts the slowest .
Also During SN1 reaction Carbocation is formed .
Attached below is the solution explanation