Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:
$19
Step-by-step explanation:
11+8 because every hour is =4 dollars and he was there for two hours which gave him 8 so 11+8=19 Jordan has to pay 19 dollars
Answer:
Actually it's not polygon. it's a nonagon. With r=8.65mm″, the law of cosines gives us side a:
a=√{b²+c²−2bc×cos40°}
a=√{149.645−149.645cos40°}
Area Nonagon = (9/4)a²cos40°
=9/4[149.645−149.645cos40°]cot20°
=336.70125[1−cos(40°)]cot(20°)
Applying an identity for the cos(40°) does not get us very far…
= 336.70125[1−(cos2(20°)−1)]cot(20°)
= 336.70125[2−cos2(20°)]cot(20°)
= 336.70125[2−(1−sin2(20°))]cot(20°)
= 336.70125[1+sin2(20°)]cos(20°)sin(20°)
= 336.70125[cot(20°)+sin(20°)cos(20°)]mm²