A. power plants burn coal. A fossil-fuel power plant is one that burns fossil fuels such as coal, natural gas or petroleum (oil) to produce electricity.
b. Fossil fuels are called so because they have been derived from fossils, which were formed millions of years ago during the time of the dinosaurs. They are fossilized organic remains that over millions of years have been converted to oil, gas, and coal.
C. they are generally classified as non-renewable resources because they take millions of years to form and known viable reserves are being depleted much faster than new ones are generated.
5.
a. Gravitational potential energy and work done
If an object is lifted, work is done against the force of gravity.
When work is done energy is transferred to the object and it gains gravitational potential energy.
If the object falls from that height, the same amount of work would have to be done by the force of gravity to bring it back to the Earth’s surface.
If an object at a certain height has 2000 J of gravitational potential energy, we can say that:
2000 J of work has been done in getting the object to that height from the ground
and
2000 J of work would have to be done to bring it back to the ground.
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
Mechanical advantage = 3
Explanation:
You exert a 100-N force on a pulley system to lift 300-N.
The mechanical advantage of the system is given by the ratio of output force to the input force.
Here, output force = 300 N and input force = 100 N
Mechanical advantage,

Mechanical advantage is 3 it means that there are 3 sections of rope support. Hence, this is the required solution.
Answer:
A fast feather
Explanation:
The faster any item is, the more momentum it has
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>