The work done to pull the object 7.0 m is the total area under the graph from 0.0 m to 7.0 m, determined as 245 J.
<h3>Work done by the applied force</h3>
The area under force versus displacement graph is work done.
The total work done by pulling the object 7 m, can be grouped into two areas;
- First area, A1 = area of triangle from 0 m to 2.0 m
- Second area, A2 = area of trapezium, from 2.0 m to 7.0 m
A1 = ¹/₂ bh
A1 = ¹/₂ x (2) x (20)
A1 = 20 J
A2 = ¹/₂(large base + small base) x height
A2 = ¹/₂[(7 - 2) + (7-3)] x 50
A2 = ¹/₂(5 + 4) x 50
A2 = 225 J
<h3>Total work done </h3>
W = A1 + A2
W = 20 J + 225 J
W = 245 J
Learn more about work done here: brainly.com/question/8119756
Can someone pls help us with this question I need the answer too
Answer:
Vmax=11.53 m/s
Explanation:
from conservation of energy

Spring potential energy =potential energy due to elevation
0.5*k*x²= mg
=mgh
0.5*k*2.3²= 430*9.81*6
k=9568.92 N/m
For safety reason
k"=1.13 *k= 1.13*9568.92
k"=10812.88 N/m
agsin from conservation of energy

spring potential energy=change in kinetic energy
0.5*k"*x²=0.5*m*
10812.88 *2.3²=430*
=11.53 m/s
<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m