Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as

By putting the values

ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation


150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.
Answer:
i dont speack spanish sorry
Explanation: agian sorry
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that:
- initial speed of turntable,

- full speed of rotation,

- time taken to reach full speed from rest,

- final speed after the change,

- no. of revolutions made to reach the new final speed,

(a)
∵ 1 rev = 2π radians
∴ angular speed ω:

where N = angular speed in rpm.
putting the respective values from case 1 we've


(c)
using the equation of motion:

here α is the angular acceleration



(b)
using the equation of motion:





(d)
using equation of motion:



(e)
using the equation of motion:



Answer:4
Explanation:
Given
Frequency of beats is 3 beats per second
Frequency of first tuning fork is 
Beat frequency is difference in the frequency of tuning forks i.e.
either
or 
so 
or

so there is not enough information given to decide.