D. Drop in barometric pressure, warm ocean water, humid air. The low pressure brings in a cool air mass causing collision of two different masses.
My father rode out a typhoon near Okinawa WWII, onboard the battleship USS Missouri BB-63.
Violent pitching, alarms going off for approaching capsize pitch. The captain came on loudspeaker “ don’t worry men, land is near... about a mile straight down”.
Answer:
1670 ml
Explanation:
molarity x Volume (Liters) = moles => Volume (Liters) = moles/Molarity
Volume needed = 2.50mol/1.50M = 1.67 Liters = 1670 ml.
Answer:
Correct answer is option (3) .
Explanation:
Hope it helpful....
Answer:
The reaction rates cannot charge
Explanation:
Answer:
1. final pressure = 0.259atm
2. 196.84mmHg
Explanation:
Using Boyle's law of equation
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (mL)
V2 = final volume (mL)
According to the information given in this question:
V1 = 105mL
V2 = 352mL
P1 = 0.871atm
P2 = ?
Using P1V1 = P2V2
P2 = P1V1/V2
P2 = 0.871 × 105/352
P2 = 91.455/352
P2 = 0.2598
P2 = 0.259atm
To convert 0.259atm of the gas into mmHg, we multiply the value in atm by 760.
Hence, 0.259 × 760
= 196.84mmHg