The question is incomplete. Here is the complete question.
The image below was taken with a camera that can shoot anywhere between one and two frames per second. A continuous series of photos was combined for this image, so the cars you see are in fact the same car, but photographed at differene times.
Let's assume that the camera was able to deliver 1.3 frames per second for this photo, and that the car has a length of approximately 5.3 meters. Using this information and the photo itself, approximately how fast did the car drive?
Answer: v = 6.5 m/s
Explanation: The question asks for velocity of the car. Velocity is given by:

The camera took 7 pictures of the car and knowing its length is 5.3, the car's displacement was:
Δx = 7(5.3)
Δx = 37.1 m
The camera delivers 1.3 frames per second and it was taken 7 photos, so time the car drove was:
1.3 frames = 1 s
7 frames = Δt
Δt = 5.4 s
Then, the car was driving:

v = 6.87 m/s
The car drove at, approximately, a velocity of 6.87 m/s
The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
When I bump the table, the coffee in my cup spilled out. Newton's 1st law explains this reaction.
Answer: A) or the first option.
Answer:
it's pray hoped this helped