30000 btuh /3413 btuh/kw. = 8.8 kw
8.8 kw/.746 kw/hp = 11.8 hp if COP is 1
11.8/3 hp (COP coefficient of performance) = 3.99 COP
>>>So yes a 3.0 hp compressor with a nominal COP of 4 will handle the 30,000 btuh load.
3.2 to 4.5 is expected COP range for an air cooled heat pump or a/c unit.
"with the wind" is a tail-wind, and the speeds are added to get the groundspeed.
"against the wind" is a head-wind, and the windspeed is subtracted from the airspeed.
ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
Meters for mass kilograms for volume cubic meters for density kilograms per cubic meter