Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other

This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion

From Newton's second law

Squarring both sides

The height from which the student fell is 5.7141 m
Answer:
hope this helps i think the answer is C
29.213 cm3
First, calculate the mass of the water used. You do this by subtracting the original mass of the flask from the combined mass of the water and flask, giving:60.735 g - 31.601 g = 29.134 g
So we now know we have 29.134 g of water. To calculate the volume of the flask, simply divide by the density of the water, giving:29.134 g / (0.9973 g/cm3) = 29.213 cm3
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Answer: 3.12 * 10^12 F ( 3.12 pF)
Explanation: To calculate this capacitor of two hollow, coaxial, iron cylinders, we have to determine the potental differente between them and afeter that to use C=Q/ΔV
The electric field in th eregion rinner<r<router
By using the Gaussian law
∫E*ds=Q inside/εo
E*2*π*rinner^2*L= Q /εo
E=Q/(2*π*εo*r^2)
[Vab]=\int\limits^a_b {E} \, dr
where a and b are the inner and outer radii.
Then we have:
ΔV= 2*k*(Q/L)* ln (b/a)
replacing the values and using that C=Q/ΔV
we have:
C= L/(2*k*ln(b/a)=0.17/(2*9*10^9*3.023)=3.12 pF