Answer:
1000 N ≈ 1000/9.80665 kg
Explanation:
The force of gravitational attraction on a mass of 1 kg on the Earth is 9.8 N. Another way of putting that is that the gravitational field strength on the surface of the Earth is 9.8 N/kg.
In the given question all the required details are given. Using these information's a person can easily find the momentum of the object. In the question it is already given that the mass of the object is 5 kg and the velocity at which it is traveling is 1.2 m/s.
We know the equation of finding momentum as
Momentum = mass * velocity
= 5 * 1.2
= 6
So the momentum of the object is 6 Newton.
Answer:
a) v= 2.1 m/s
b) ω = 0.807 rad/s
Explanation
Conceptual analysis :
The dog and the merry-go- round describes a circular motion, then, the following formulas apply :
Formula (1)
v = ω *r Formula (2)
Where:
: Centripetal acceleration(m/s²)
v: linear speed or tangential (m/s)
r : radius of the circle (m)
ω : angular speed ( rad/s)
Data
r= 2.6 m
= 1.7 m/s²
Problem develpment
a) We replace data in the formula 1 to calculate the dog's linear speed(v):


v= 2.1 m/s
b)We replace data in the formula 2 to calculate the angular speed of the merry-go- round (ω).
v = ω *r
2.1 = ω *2.6
ω = 2.1/2.6
ω = 0.807 rad/s
M = 20.0kg, the mass of the block.
c = 1700 J/(kg-°C), the specific heat
ΔT = 25 - 15 = 10 °C = 10 K, the change in temperature.
The change in thermal energy is

Answer: 340 kJ (or 340,000 J)
The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.