Answer:
0
Step-by-step explanation:
Separate into two parts
![\frac{4xy^{3} }{2xy^{2} } + \frac{8x^{2} {y}^{5} }{2x {y}^{2} }](https://tex.z-dn.net/?f=%20%5Cfrac%7B4xy%5E%7B3%7D%20%7D%7B2xy%5E%7B2%7D%20%7D%20%20%2B%20%20%5Cfrac%7B8x%5E%7B2%7D%20%7By%7D%5E%7B5%7D%20%7D%7B2x%20%7By%7D%5E%7B2%7D%20%7D%20)
Simplify:
This is for the first fraction
![\frac{4x {y}^{3} }{2x {y}^{2} } = (4 \div 2)(x \div x)( {y}^{3} \div {y}^{2} )](https://tex.z-dn.net/?f=%20%5Cfrac%7B4x%20%7By%7D%5E%7B3%7D%20%7D%7B2x%20%7By%7D%5E%7B2%7D%20%7D%20%20%3D%20%284%20%5Cdiv%202%29%28x%20%5Cdiv%20x%29%28%20%7By%7D%5E%7B3%7D%20%20%5Cdiv%20%20%7By%7D%5E%7B2%7D%20%29)
![2(1)( {y}^{3 - 2} )](https://tex.z-dn.net/?f=2%281%29%28%20%7By%7D%5E%7B3%20-%202%7D%20%29)
![2{y}](https://tex.z-dn.net/?f=2%7By%7D)
Now for the second fraction:
![\frac{8 {x}^{2} {y}^{3} }{2x {y}^{2} } = ( 8 \div 2)( {x}^{2} \div x)( {y}^{5} \div {y}^{2} )](https://tex.z-dn.net/?f=%20%5Cfrac%7B8%20%7Bx%7D%5E%7B2%7D%20%7By%7D%5E%7B3%7D%20%20%7D%7B2x%20%7By%7D%5E%7B2%7D%20%7D%20%20%3D%20%28%208%20%5Cdiv%202%29%28%20%7Bx%7D%5E%7B2%7D%20%20%5Cdiv%20x%29%28%20%7By%7D%5E%7B5%7D%20%20%20%5Cdiv%20%20%20%7By%7D%5E%7B2%7D%20%29)
![4( {x}^{2 - 1} )( {y}^{5 - 2} )](https://tex.z-dn.net/?f=4%28%20%7Bx%7D%5E%7B2%20-%201%7D%20%29%28%20%7By%7D%5E%7B5%20-%202%7D%20%29)
![4x {y}^{3}](https://tex.z-dn.net/?f=4x%20%7By%7D%5E%7B3%7D%20)
Add both parts together
![2y + 4x {y}^{3}](https://tex.z-dn.net/?f=2y%20%2B%204x%20%7By%7D%5E%7B3%7D%20)
To turn this into the said formula, that would become:
![2 {x}^{0} {y}^{1} + 4 {x}^{1} {y}^{3}](https://tex.z-dn.net/?f=2%20%7Bx%7D%5E%7B0%7D%20%20%7By%7D%5E%7B1%7D%20%20%2B%204%20%7Bx%7D%5E%7B1%7D%20%20%7By%7D%5E%7B3%7D%20)
Where:
a=0
b=1
c=1
d=3
Any value with an exponent 0 except zero will be equal to 1
N/4.3 = 9.4
4.3 × n/4 = 9.4 × 4.3
n = 40.42
Answer
the answer is 76%
Step-by-step explanation:
I did all my equations and showed my work
Answer:
32
Step-by-step explanation:
Answer:
6
1, 50.3
Step-by-step explanation:
the second part for question two could be anywhere from 50.1-50.4