Answer:
Kf= 36 J
W(net) = 32 J
Explanation:
Given that
m = 2 kg
F= 4 N
t= 2 s
Initial velocity ,u= 2 m/s
We know that rate of change of linear momentum is called force.
F= dP/dt
F.t = ΔP
ΔP = Pf - Pi
ΔP = m v - m u
v= Final velocity
By putting the values
4 x 2 = 2 ( v - 2)
8 = 2 ( v - 2)
4 = v - 2
v= 6 m/s
The final kinetic energy Kf
Kf= 1/2 m v²
Kf= 0.5 x 2 x 6²
Kf= 36 J
Initial kinetic energy Ki
Ki = 1/2 m u²
Ki= 0.5 x 2 x 2²
Ki = 4 J
We know that net work is equal to the change in kinetic energy
W(net) = Kf - Ki
W(net) = 36 - 4
W(net) = 32 J
Potential energy is energy that is found in a system, grounded on the position of objects. The Coulomb (C) is the unit of charge, and the unit of electric potential is the Volt (V), which is equivalent to (J/C) or Joule per Coulomb.So the formula for this is potential = kQ / d, plugging in the given from the questions will give us:potential = 8.99e9N·m²/C² * 1.602e-19C / 0.053e-9m = 27 V
Answer:
95.51 N
Explanation:
First, find the mass in kg:
Fg = 585 N
Fg = m*g
585 N = m*9.8 m/s^2
<u>m = 59.69 kg</u>
Then, to find your weight (Fg) on the moon, you use the same equation of
Fg(moon) = m*g, except this time g = 1.60 m/s^2
Fg(moon) = 59.69 kg * 1.60 m/s^2
Fg(moon) = 95.51 N
Hope this helps!! :)
Answer:
v = 3.27 m/s
Explanation:
KE = 1/2 mv^2
695 J = 1/2 (130kg)(v^2)
695 J / (1/2 x 130kg) = v^2
v^2 = square root of 10.69
v = 3.27 m/s