Answer:
6.14
Explanation:
If the pH falls as temperature increases, this does not mean that water becomes more acidic at higher temperatures. A solution is acidic if there is an excess of hydrogen ions over hydroxide ions (i.e., pH < pOH). In the case of pure water, there are always the same concentration of hydrogen ions and hydroxide ions and hence, the water is still neutral (pH = pOH) - even if its pH changes.
The problem is that we are all familiar with 7 being the pH of pure water, that anything else feels really strange. Remember that to calculate the neutral value of pH from Kw . If that changes, then the neutral value for pH changes as well. At 100°C, the pH of pure water is 6.14, which is "neutral" on the pH scale at this higher temperature. A solution with a pH of 7 at this temperature is slightly alkaline because its pH is a bit higher than the neutral value of 6.14.
Yes thats correct....becuase all of your weight is concentrated on a small area compared to the larger surface area of your feet!
is that what your question was?
1 Amp = 1 Coulomb/sec
1 Coulomb/sec = 6.25*10^18 electrons/sec
Therefore,
5.0 A = 5 C/s = 5*6.25*10^18 = 3.125*10^19 e/s
In 10 second, number of electrons are calculated as;
Number of electrons through the device = 3.125*10^19*10 = 3.125*10^20 electrons
The percentage error in his experimental value is -51.97%.
<h3>What is percentage error?</h3>
This is the ratio of the error to the actual measurement, expressed in percentage.
To calculate the percentage error of the student, we use the formula below.
Formula:
- Error(%) = (calculated value-accepted value)100/(accepted............. Equation 1
From the question,
Given:
- Calculated value = 4.15 g/cm
- accepted value = 8.64 g/cm
Substitute these values into equation 1
- Error(%) = (4.15-8.64)100/8.64
- Error(%) = -4.49(100)/8.64
- Error(%) = -449/8.64
- Error(%) = -51.97 %
Hence, The percentage error in his experimental value is -51.97%.
Learn more percentage error here: brainly.com/question/5493941
Answer:
x = 5.79 m
Explanation:
given,
mass of the car = 39000 Kg
spring constant = 5.7 x 10⁵ N/m
acceleration due to gravity = 9.8 m/s²
height of the track = 25 m
length of spring compressed = ?
using conservation of energy
potential energy is converted into spring energy




x = 5.79 m
the spring is compressed to x = 5.79 m to stop the car.