Answer:
A. The wavelengths of the new sound waves are longer
Explanation:
This is the Doppler effect which can be best illustraded for the case of a siren of an ambulance approaching us having a greater frequency and getting lower in frequency and deeper as the ambulance passes us.
Since the wavelength is inversely proportional to the frequency it follows the wavelengths are longer when the frequency decreases lowering its pitch and getting deeper.
Answer:
A. External
Explanation:
External stimulus includes touch/pain, vision, smell, taste, and sound.
Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:
b) Force on deep end:
c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:
2) Force on the triangular part:
here
h = h(d) - h(s)
h = 10-4
h = 6ft
now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom: