Answer:
The momentum of the photon is 1.707 x 10⁻²² kg.m/s
Explanation:
Given;
kinetic of electron, K.E = 100 keV = 100,000 eV = 100,000 x 1.6 x 10⁻¹⁹ J = 1.6 x 10⁻¹⁴ J
Kinetic energy is given as;
K.E = ¹/₂mv²
where;
v is speed of the electron

Therefore, the momentum of the photon is 1.707 x 10⁻²² kg.m/s
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
The answer is: Motion!
Have a great day
Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>