Answer:
B) x^2+6x+8
Explanation:
x-4 | x^3+2x^2-16x-32
- x^3-4x^2 <-- (x-4)(x^2)
_________________
6x^2-16x-32
- 6x^2-24x <-- (x-4)(6x)
_________________
8x-32
- 8x-32 <- (x-4)(8)
___________________________
0 | x^2+6x+8
This means the answer is B) x^2+6x+8
To solve the problem it is necessary to apply the concepts related to sound intensity. The most common approach to sound intensity measurement is to use the decibel scale:

Where,
is a reference intensity. It is the lowest or threshold intensity of sound a person with normal hearing can perceive at a frequency of 1000 Hz.
I = Sound intensity
Our values are given by,


For each auto the intensity would be,




Therefore the sound intesity for the 7 autos is


The sound level for the 7 cars in dB is


Answer: 
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero.
Now, the second-order diffraction angle is given when
, hence equation (1) becomes:
(2)
Now we have to find the value of
:
(3)
Then:
(4)
(5)
Finally:
(6)
Answer: sheet of charge
Explanation:
a )
Since the charge is negative , potential will be negative near it . At a far point potential will be less negative. So potential will virtually increase on going away from the sheet . At infinity it will become almost zero. Electric field will be towards the plate , so potential will decrease towards the plate.
b ) The shape of equi -potential surface will be plane parallel to the sheet of charge because electric field will be perpendicular to the sheet of charge and almost uniform near the sheet of charge. The equi- potential surface is always perpendicular to electric field.
C ) Electric field which is almost uniform near the sheet of charge is equal t the following
E = σ / ε₀ where σ is charge density of surface and ε₀ is permittivity of medium whose value is 8.85 x 10⁻¹²
E = 3 x 10⁻⁹ / 8.85 x 10⁻¹²
= .3389 x 10³
= 338.9 V / m
spacing between 1 V
= 1 / 338.9 m
= 2.95 X 10⁻3 m
= 2.95 mm.
Answer:
Alaska: Hydrokinetic Energy Campbell CR9000X used for in-stream hydrokinetic device evaluation. Marine hydrokinetic energy power generation is an emerging sector in the renewable energy portfolio. Hydrokinetic devices convert the energy of waves, tidal currents, ocean currents or river currents into electrical power.