Answer:
0.011 m.
Explanation:
Energy stored in the spring = Energy of the projectile.
1/2ke² = mgh ................ Equation 1
Where k = spring constant, e = extension or compression, m = mass of the projectile, g = acceleration due to gravity, h = height.
make e the subject of the equation
e = √(2mgh/k)............................. Equation 2
Given: k = 12 N/cm = 1200 N/m, m = 15 g = 0.015 kg, h = 5.0 m
Constant: g = 9.8 m/s²
Substitute into equation 2
e = √(2×0.015×5/1200)
e = √(0.15/1200)
e = √(0.000125)
e = 0.011 m.
We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

Where,
F_D = Drag Force
= Drag coefficient
A = Area
= Density
V = Velocity
Our values are given by,
(That is proper of a cone-shape)



Part A ) Replacing our values,


Part B ) To find the torque we apply the equation as follow,



Answer:
force = 1 ×
N
Explanation:
given data
automobile mass = 1200 kg
insect mass = 0.0001 kg
insect accelerated = 100 m/s²
to find out
magnitude of the force the insect exerts on the car
solution
we get here force the insect exerts that is express as
force = mass × acceleration ............1
put here value we get
force = 0.0001 × 100 m/s²
force = 1 ×
N