Answer:
Answer:
Speed of the wave in the string will be 3.2 m/sec
Explanation:
We have given frequency in the string fixed at both ends is 80 Hz
Distance between adjacent antipodes is 20 cm
We know that distance between two adjacent anti nodes is equal to half of the wavelength
So \frac{\lambda }{2}=20cm
2
λ
=20cm
\lambda =40cmλ=40cm
We have to find the speed of the wave in the string
Speed is equal to v=\lambda f=0.04\times 80=3.2m/secv=λf=0.04×80=3.2m/sec
So speed of the wave in the string will be 3.2 m/sec
Answer:
How Heavy? More than 2,300,000 limestone and granite blocks were pushed, pulled, and dragged into place on the Great Pyramid. The average weight of a block is about 2.3 metric tons (2.5 tons).
Explanation:
Answer:
see explanation
Explanation:
There is an increasing demand for materials and natural resources from a growing global population, especially those in more economically developed countries. The world's resources are being used up more quickly. The consumption of resources is spread unequally between MEDCs (more economically developed countries), who use more resources, and LEDCs (less economically developed countries), who use less.
The gap between the rich and poor is more evident when the resources are shared so unevenly and unfairly and natural resources like materials and natural energy cannot reach the demand of the people which can have consequences and be very difficult to manage. Having a lack of these materials in a country can result in prices going up for them, and the industry could be harder to work in because of a lack of materials.
Answer:
The forces creating the net force must lie in the same direction.
Explanation:
newton's second law states that the net force acting on the body is equal to the product of mass and the acceleration of the body.
If there are several forces acting on the body in different directions, then we have to find teh net force by using the vector sum and then find the acceleration.
It is not necessary that all the forces acting in the same direction.
if they are in different directions then we have to find the net force by t=using the formula for the vector sum.