Oxygen is needed to carry out a lot of biochemical processes in the body. If the amount of oxygen available to the blood decreases significantly a lot of things will go wrong in the body. For instance, lack of adequate oxygen will lead to the death of neurons which will eventually leads to brain cells death and irreparable brain damage. Oxygen is also needed for cellular respiration, without respiration, there will not be oxygen for carrying out various cellular activities and this will result into death. Oxygen deprivation will also leads to difficulty in breathing and other associated problems.
Answer:
D) 15375kgm/s
Explanation:
weight of the boy 25kg +weight of the car 1000kg= 1025kg so momentum =mass × velocity. so it's SI unit is = kg×m/s = kg m/s.
Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>
Answer:
k = -0.0525 s⁻¹
Explanation:
The equaiton for a first order reaction is stated below:
ln[A]=−kt+ln[A]₀.
[A] = 5.50 x 10⁻³ M
[A]₀ = 7.60 x 10⁻² M
t = 85.0 - 35.0 = 50.0 s
The rate constant is represented by k and can be calculated substituting the values given above:
k = (ln[A]₀ - ln[A])/t
k = (ln5.50 x 10⁻³ M - ln7.60 x 10⁻² M)/50.0s
k = -0.0525 s⁻¹
Answer:
A 1 molar (M) solution will contain 1.0 GMW of a substance dissolved in water to make 1 liter of final solution. Hence, a 1M solution of NaCl contains 58.44 g.
Explanation: