Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
Answer:
82.4 cm
Explanation:
The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance
then ,
u + v = 184 cm
In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.
The difference between two object distance ie( v - u ) is the distance by which lens is moved so
v - u = 82.4 cm
Explanation:
If a metal rod of length L moves with velocity v is moving perpendicular to its length, in a magnetic field B, the induced emf is given by :

The electric field in the conductor is given by :

It is clear that the electric field is independent of the length of the rod. If the length of the rod is doubled, the electric field in the rod remains the same.
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete