The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.
Answer:
(4.31±0.38) million Solar masses.
Explanation:
The galactic center is the center of the milky way around which the galaxy rotates. It is most likely the location of a supermassive black hole which has a mass of (4.31±0.38) million Solar masses. The location is called Sagittarius A*.
As there is interstellar dust in our line of sight from the Earth infrared observations need to be taken.
Answer:
A
Explanation:
From a Solenoid we know that a magnetic fiel is always inversely proportional to lenght L or BL = constant

As I is constant



Research has shown that the electrons orbit the nucleus in circular motions as shown on the classic Bohr model. FALSE