Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
Memorize this and you'll be able to do ALL of these: <em>1 kg = 1,000 g</em>
So if you have some grams, divide the number by 1,000 to get kilograms.
1,000 g = 1.000 kg
500 g = 0.500 kg
100 g = 0.100 kg
50 g = 0.050 kg
20 g = 0.020 kg
10 g = 0.010 kg
Answer:
308,000 or 30.8×10^3
Explanation:
v=f×lamda
v is ?, f is 875Hz, lamda is 352m
v=875×352
v=308,000
v=30.8×10^3 m/s
Answer:
The horizontally applied force = 2360 N
Explanation:
<em>Force:</em> Force can be defined as the product of mass and acceleration. the S.I unit of force is Newton (N)
Fh = Fr + ma......... Equation 1
Where Fh = horizontally applied force, Fr = friction force, m = mass of the crate, a = acceleration of the crate.
<em>Given: m = 400 kg, a = 1 m/s²</em>
Fr = 1/2 W, W = mg ⇒W = 400×9.8 = 3920 N
∴Fr = 1/2(3920), Fr = 1960 N
Substituting these values into equation 1
Fh = 1960 + 400×1
Fh = 1960 + 400
Fh = 2360 N
Therefore the horizontally applied force = 2360 N
Answer:
At the very beginning it is what states the whole life cycle