Answer:
Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
The mass is moving by uniformly accelerated motion, with initial velocity

and acceleration

. Its position at time t is given by the following law:

where we take the initial position

since we are only interested in the distance traveled by the mass.
If we put

into the equation, the corresponding time t is the time it takes for the mass to travel this distance:


And the two solutions for the equation are:

--> negative, we can discard it

--> this is the solution to our problem
Answer:
the frequency is the fundamental and distance is L = ¼ λ
Explanation:
This problem is a phenomenon of resonance between the frequency of the tuning fork and the tube with one end open and the other end closed, in this case at the closed end you have a node and the open end a belly, so the wavelength is the basis is
λ = 4 L
In this case L = 19.4 cm = 0.194 m
let's use the relationship between wave speed and wavelength frequency and
v = λ f
where the frequency is f = 440 Hz
v = 4 L f
let's calculate
v = 4 0.194 440
v = 341.44 m / s
so the frequency is the fundamental and distance is
L = ¼ λ
Given:
m = 13.2 oz, the mass of water measured
Note that

Answer: 0.0284 kg
Answer:
Explanation:
A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell outwardly oriented and end at negatively charged shell .
B )
distance between the centres of spherical shell
= 2 a
potential energy of charges
= k q₁ x q₂ / R
= k x - Q x Q / ( 2a )
= - k Q²/ 2a
So work needed to separate them to infinity will be equal to
= k Q²/ 2a