Answer:
Armando's weight ,restored force created by the trampoline
a harmonic movement within the trampoline
Explanation:
In a trampoline we have two forces that actuate Armando's weight and the restored force created by the trampoline that depends on the deformation distance of the elastic canvas.
Amando's weight is vertical and directed towards the center of the Earth and has a constant value, this weight is balanced with the elastic force the springboard exerts on Armando in a vertical direction.
In general, when entering the trampoline, a small jump is made, this creates a speed that deforms the canvas until the speed is reduced to zero, at this point the elastic force is greater than the weight and the boy begins to climb, After the boy leaves the canvas he meets only the force of gravity and his speed decreases to zero and begins his fall.
In Summary Armando is in a harmonic movement within the trampoline
Answer:
Homeostasis: A property of cells, tissues, and organisms that allows the maintenance and regulation of the stability and constancy needed to function properly. Homeostasis is a healthy state that is maintained by the constant adjustment of biochemical and physiological pathways.
Explanation:
IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
Answer:
hello the diagram related to this question is missing attached below is the missing diagram
Answer :
The magnitude of the electric field = 4KQ / L^2
direction = 45° east to south
Explanation:
The magnitude of the electric field = 4KQ / L^2
direction = 45° east to south
Answer:

Explanation:
Given that,
The current flowing in the circuit, I = 3 A
The power of the battery, P = 25 W
We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :

Put all the values to find R.

So, the resistance is equal to
.