Answer:
a) 2nd case rate of rotation gives the greater speed for the ball
b) 1534.98 m/s^2
c) 1515.04 m/s^2
Explanation:
(a) v = ωR
when R = 0.60, ω = 8.05×2π
v = 0.60×8.05×2π = 30.34 m/s
Now in 2nd case
when R = 0.90, ω = 6.53×2π
v = 0.90×6.53×2π = 36.92 m/s
6.35 rev/s gives greater speed for the ball.
(b) a = ω^2 R = (8.05×2π)^2 )(0.60) = 1534.98 m/s^2
(c) a = ω^2 R = (6.53×2π)^2 )(0.90) = 1515.05 m/s^2
Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
According to Newton (2nd law), Force = (mass) x (acceleration)
Substitute what we know : Force = (1,000 kg) x (3 m/s²)
Do the arithmetic: Force = 3,000 kg-m/s² = 3,000 newtons