To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Answer:
The electron cloud is mostly empty space
The formula for velocity is distance divided by time, or d/t. The distance is 500 km and the time is 1.2 hours. 500/1.2 is 416.6 km/hr.
Answer:
Specific gravity can be used to determine if an object will sink or float on water. ... If an object or liquid has a specific gravity greater than one, it will sink. If the specific gravity of an object or a liquid is less than one, it will float.
hope this helps, have a great day/night, and stay safe!
The number of grams of carbon that combine with 16 g of oxygen in the formation of CO₂ is 6g.
When two elements combine to make more than one compound, the masses of one element combined with a fixed amount of another element are in the ratio of whole numbers, according to the law of multiple proportions.
When combined with oxygen, carbon can produce two different compounds. They are referred to as carbon dioxide (CO₂) and carbon monoxide (CO).
Carbon monoxide is formed by combining 12 g of carbon with 16 g of oxygen whereas Carbon dioxide is formed when 12 g of carbon reacts with 32 g of oxygen. The amount of carbon is fixed at 12 g in each case. The mass ratio of carbon monoxide to carbon dioxide is 16: 32, or 1: 2.
But in the given case, 16g of oxygen is reacting instead of 32g. Therefore, the number of grams of carbon reacting will be:

Thus, 6g of carbon will react with 16g of oxygen to form carbon dioxide.
Read more about Law of Multiple Proportions:
brainly.com/question/13058110
#SPJ4