Complete Question
The complete question is shown on the first uploaded image
Answer:
The theoretical angular magnification lies within the angular magnification range
Explanation:
From the question we are told that
The focal length of B is 
The focal length of A is 
The theoretical angular magnification is mathematically represented as


Form the question the measured angular magnification ranges from 4 -5
So from the value calculated and the value given we can deduce that the theoretical angular magnification lies within the angular magnification range
Answer
given,
mass of the shell = 87 g = 0.087 Kg
speed of the muzzle = 853 m/s
mass of the helicopter = 4410 kg
A burst of 176 shell fired in 2.93 s
resulting average force = ?
momentum of the shell = m v
= 0.087 x 853
= 74.21 kgm/s
momentum of 176 shell is = 176 p
= 176 x 74.21
= 13060.96
momentum of helicopter = - 13060.96 kgm/s
amount of speed reduce a = 
a= 
a = 2.96 m/s²
velocity = \dfrac{2.96}{2.93}
v = 1.01 m/s
Average v = (initial v + final v)/2
= (14 m/s + 0 m/s)/2
= 7 m/s
Your average velocity during braking is 7 m/s
Power is defined by the rate of work done by the object. Statement D represents the correct definition of Power.
<h3>What is Power?</h3>
Power can be defined as the transfer of energy from one place to another place. The rate at which this energy is transferred is called power.
In other words, the rate at which the work is done by an object is called its power. The mathematical representation of power is given as,

Here, P is the power,
is the change in energy or work done and
change in time.
The Power can be written in SI units as Watt or J/s.
Hence we can conclude that the power is the rate at which work is accomplished. Statement D is the correct representation of Power.
To know more about power, follow the link given below.
brainly.com/question/1618040.
Answer:
(a) 2.542 cm
(b) 272.7°C
Explanation:
diameter, d = 2.540 cm
T1 = 20°C
α = 11 x 10^-6 /°C
(a) Let d' be the diameter.
T2 = 87°C
Use he formula for the areal expansion
A' = A ( 1 + βΔT)
where, β is the coefficient of areal expansion and ΔT is teh rise in temperature, A' be the area at high temperature and A be the area at low temperature.
β = 2 α = 2 x 11 x 106-6 = 22 x 10^-6 /°C
So,

D'^2 = 2.54^2 ( 1 + 22 x 10^-6 x 67)
D' = 2.542 cm
(b) Let the change in temperature is ΔT.
Use the formula for the volumetric expansion
ΔV = V x γ x ΔT
Where, γ = 3 x α = 3 x 11 x 10^-6 = 33 x 10^-6 /°C
0.9/100 = 33 x 10^-6 x ΔT
ΔT = 272.7°C