1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
3 years ago
5

A student moves from a region that has short, cool summers and very cold winters to a region that has hot and

Physics
2 answers:
Vinvika [58]3 years ago
6 0

Answer:

(D) temperate continental

Explanation:

irga5000 [103]3 years ago
4 0

Answer:B

Explanation:

You might be interested in
Energy that flows from an objective with a higher temperature to an object with a lower temperature
dalvyx [7]
That's THERMAL energy, often referred to as "heat".
7 0
4 years ago
A 3 kg rock sits on a 0.8 meter ledge. If it is pushed off, how fast will it be going at the bottom?
andrey2020 [161]

As long as it sits on the shelf, its potential energy
relative to the floor is . . .

   Potential energy =      (mass) x (gravity) x (height) =

                                       (3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .

If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.

   Kinetic energy =                                          (1/2) x (mass) x (speed)²

                                                 23.52 joules = (1/2) x (3 kg) x (speed)²

Divide each side by  1.5 kg :     23.52 m²/s² = speed²

Take the square root of each side:    speed = √(23.52 m²/s²) =  <em>4.85 m/s </em> (rounded)


6 0
3 years ago
A certain quantity of steam has a temperature of 100.0 oC. To convert this steam into ice at 0.0 oC, energy in the form of heat
KonstantinChe [14]

Answer:

2452.79432 m/s

Explanation:

m = Mass of ice

L_s = Latent heat of steam

s_w = Specific heat of water

L_i = Latent heat of ice

v = Velocity of ice

\Delta T = Change in temperature

Amount of heat required for steam

Q_1=mL_s\\\Rightarrow Q_1=m(2.256\times 10^6)

Heat released from water at 100 °C

Q_2=ms_w\Delta T\\\Rightarrow Q_2=m4186\times (100-0)\\\Rightarrow Q_2=m0.4186\times 10^6

Heat released from water at 0 °C

Q_3=mL_i\\\Rightarrow Q_3=m(333.5\times 10^3)\\\Rightarrow Q_3=m(0.3335\times 10^6)

Total heat released is

Q=Q_1+Q_2+Q_3\\\Rightarrow Q=m(2.256\times 10^6)+m0.4186\times 10^6+m(0.3335\times 10^6)\\\Rightarrow Q=3008100m

The kinetic energy of the bullet will balance the heat

K=Q\\\Rightarrow \frac{1}{2}mv^2=3008100m\\\Rightarrow v=\sqrt{2\times 3008100}\\\Rightarrow v=2452.79432\ m/s

The velocity of the ice would be 2452.79432 m/s

6 0
4 years ago
If a 80kg diver jumps off of a 5 m high dive into a regulation diving pool, how much should the temperature of the pool go up?
Agata [3.3K]

Answer:

The answer cannot be determined.

Explanation:

The energy of the diver when he hits the pool will be equal to its potential energy mgh, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.

The change in temperature {\Delta}T then will be

{\Delta}T=\frac{{\Delta}Q}{mc} .

Where m is the mass of water in the pool, c is the specific heat capacity of water, and {\Delta}Q is the added heat which in this case is the energy of the diver.

Since we do not know the mass of the water in the pool, we cannot make this calculation.

7 0
3 years ago
Stars of spectral type A and F are considered ________.
LekaFEV [45]

Answer:

<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>

Explanation:

The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:

• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>

• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.

• They emit sufficient radiation at wavelengths conducive to photosynthesis.

• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.

<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>

4 0
3 years ago
Other questions:
  • Hi! Can you help me? :) A satellite's speed is 10,000 m/s. After 1 min, it is 5,000 m/s. What is the satellite's acceleration? T
    11·2 answers
  • Which one of the following statements does not accurately describe vibrations?
    13·1 answer
  • Uses and effects of UV rays? ​
    14·1 answer
  • Two horizontal forces act on a 1.4 kg chopping block that can slide over a friction-less kitchen counter, which lies in an xy pl
    13·1 answer
  • A flowerpot that has a mass of 1.5 kg is sitting on a windowsill 30 meters from the ground. Is the energy of the flowerpot poten
    13·1 answer
  • Please answer !!!A company wants to install a sensor to monitor the light level in the offices of their buildings. The sensor co
    7·2 answers
  • A phonograph turntable rotating at 33 1 3 rev/min slows down and stops in 1.98 min. (Assume the turntable initially rotates in t
    8·1 answer
  • Helppppppp its exam ​
    5·1 answer
  • Please answer I need help
    5·1 answer
  • ___________ is used mainly in submarines that remain underwater
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!