the answer is c I hope this helps
Answer:
Please see below as the answer is self-explanatory.
Explanation:
- We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).
- Both movements are independent each other, due to they are perpendicular.
- In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.
- Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:

- Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:

- In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.
- Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:

- In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:

- Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:

- Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.
Answer:
David
Explanation:
Because he is not on the ride with Ben and Justine
I am pretty sure but not 100% that it would still continue to orbit
Answer:
0.833 N
Explanation:
Formula for Kinetic Energy 
Formula for Potential Energy 
First we need to find the vertical distance between the maximum-angle position and the pendulum lowest point:
Using the swinging point as the reference, the vertical distance from the maximum-angle (34 degree) position to the swinging point is:

At the lowest position, pendulum is at string length to the swinging point, which is 1.2 m. Therefore, the vertical distance between the maximum-angle position and the pendulum lowest point would be
y = 1.2 - 1 = 0.2 m.
As the pendulum is traveling from the maximum-angle position to the lowest point position, its potential energy would be converted to the kinetic energy.
By law of energy conservation:




Substitute
and y = 0.2 m:

At lowest point, pendulum would generate centripetal tension force on the string:

We can substitute mass m = 0.25, rotation radius L = 1.2 m and v = 2 m/s:
