Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Answer:
The noble gases (Group 18) are located in the right of the periodic table and were previously referred to as the "inert gases" due to the fact that their filled valence shells (octets) make them extremely nonreactivE
Explanation:
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
A troposphere because that is where all the CO2 and where we live
Answer:
C) 8
Explanation:
Total number of carbon atoms = 3
Number of single bonds = 3
So, each carbon is bonded to the next carbon with the single bond, Number of unshared electrons left with the terminate carbons are 3 and with the intermediate carbon is 2.
Thus, the two terminate carbon have 3 hydrogen each and the intermediate will have 2.
<u>Total - 8</u>