1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
2 years ago
13

A three (3) story theater with one side wall, facing the wind, has a height of 30 feet against which directly impact the winds d

uring a hurricane. Each of the floors has a height of 10 feet. The theater also has opposite walls, each 10 feet high. All the mentioned walls have a length of 120 feet. The building is fully enclosed and is It is located in a flat and open terrain. Assume that the sustained speed of the winds it is 145 MPH.
Determine:
a) the pressure exerted by the wind against each of the side walls (lb/ft2)
b) the pressure exerted by the wind against each of the opposite walls (lb/ft2)
Engineering
1 answer:
iogann1982 [59]2 years ago
3 0

You have been installed a chief in your hometown write a letter to your friend in another school telling him at least three things you intend doing to develop the town

You might be interested in
ILL GIVE BRAINLIEST!!!
Sedbober [7]
Get the app socratic I saw the answer to your question on the app but I ran out of screen time to show you
6 0
3 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
the coil polarity in a waste spark system is determined by the direction in which the coil is wound (left hand rule for conventi
zaharov [31]
The coil polarity in a waste-spark system is determined by the direction in which the coil is wound (left-hand rule for conventional current flow)and can’t be changed. For example, if a V-8 engine has a firing order of 18436572 and the number 1 cylinder is on compression, which cylinder will be on the exhaust stroke?
3 0
3 years ago
50.38
klemol [59]

Answer:

International Building Code (IBC)

Explanation:

6 0
2 years ago
The boy in the wagon begins throwing bricks out of the wagon to simulate rocket propulsion. The wagon begins at rest, and the bo
Digiron [165]

Q:What velocity does the boy attain if he throws the bricks one at a time?

Answer:Linear velocity since it moves back and firth and does not rotate like angular velocity.

5 0
3 years ago
Other questions:
  • (a) Determine the dose (in mg/kg-day) for a bioaccumulative chemical with BCF = 103 that is found in water at a concentration of
    11·1 answer
  • In the combination of resistors above, consider the 1.50 µΩ and 0.75 µΩ. How can you classify the connection between these two r
    6·1 answer
  • Which of these is least likely a step in replacing a failed compressor?
    12·2 answers
  • Using phasors, the value of 37 sin 50t + 30 cos(50t – 45°) is _________ cos(50t+(_____°)). Please report your answer so the magn
    5·1 answer
  • What structure was created to help prevent shipwrecks?
    9·1 answer
  • When you do a vehicle check, what do you NOT need to keep an eye on?
    9·1 answer
  • Describe how a cavity wall works and sketch its major construction features. What aspects of cavity wall construction are most c
    5·1 answer
  • Just need someone to talk to pls dont just use me for points
    5·1 answer
  • Three spheres are subjected to a hydraulic stress. The pressure on spheres 1 and 2 is the same, and they are made of the same ma
    8·1 answer
  • A proposed embankment fill requires 7100 ft of compacted soil. The void ratio of the compacted fill is specified as 0.5. Four bo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!