The answer is A, do you want me to explain it? It’s pretty simple, you just need to follow all the signs in brackets and match them in those in the answer
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3
A. They are the most destructive earthquake waves.
D. They can move in a rolling pattern through rock, like an ocean wave.
Explanation:
Surface waves are seismic waves that cause the most destruction during an earthquake.
Rayleigh waves are known to cause rolling pattern of rocks just like an ocean waves.
- Seismic waves are elastic waves that notably transmits energy.
- They usually accompany earthquakes.
- There are two broad categories of these waves.
- Surface and body waves.
- Seismic surface waves are low frequency and long wavelength waves.
- They travel very close to the surface.
- They are made up of Love and Rayleigh waves.
- Love waves travels laterally in a horizontal fashion.
- Rayleigh waves rolls like ocean waves in the ground.
- The bulk of the destruction caused during an earthquakes is due to these waves.
- They are the last waves to arrive a seismic station
learn more:
Seismograph brainly.com/question/11292835
#learnwithBrainly
Answer:
I believe that it is B. 1
Explanation: I could be wrong but I believe its 1
Answer and Explanation:
Iodine have lower atomic mass than tellurium even though the atomic number of iodine is more than the atomic number of tellurium
This is because the atomic weight of any element is the sum of number of proton and number of neutron, even though the number of proton in iodine is more so but the number of neutron is less as compared to tellurium which makes the tellurium of high atomic mass