the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4
Answer:
60
Explanation:
because he ran after school and a new video for you guys did you see a picture and I have to do with your friends are going on in your own business and a new video for a new one is the most important thing in my life is not the same time and a 6374 ok I love it when it is the best of all of them I have been in the
Answer:
The pressure of CO2 = 0.48 atm
Explanation:
Step 1: Data given
Kp = 0.23
Step 2: The balanced equation
2NaHCO3(s) ↔ Na2CO3(s) + CO2(g) + H2O(g)
Step 3: Calculate the pressure of CO2
Kp = (p(CO2))*(p(H2O))
For 1 mol CO2 we have 1 mol H2O
x = p(CO2) = p(H2O)
Kp = 0.23 = x*x
x = √0.23
x = 0.48
pCO2 = x atm = 0.48 atm
The pressure of CO2 = 0.48 atm
I belive it would be A? BUT IN NOT QUIE SURE? 0_0
The answer is 2300 mg which is equal to one teaspoon of salt