Answer:
See explanation
Explanation:
We have a mass
revolving around an axis with an angular speed
, the distance from the axis is
. We are given:
![\omega = 10 [rad/s]\\r=0.5 [m]\\m=13[Kg]](https://tex.z-dn.net/?f=%5Comega%20%3D%2010%20%5Brad%2Fs%5D%5C%5Cr%3D0.5%20%5Bm%5D%5C%5Cm%3D13%5BKg%5D)
and also the formula which states that the kinetic rotational energy of a body is:
.
Now we use the kinetic energy formula

where
is the tangential velocity of the particle. Tangential velocity is related to angular velocity by:

After replacing in the previous equation we get:

now we have the following:

therefore:

then the moment of inertia will be:
![I = 13*(0.5)^2=3.25 [Kg*m^2]](https://tex.z-dn.net/?f=I%20%3D%2013%2A%280.5%29%5E2%3D3.25%20%5BKg%2Am%5E2%5D)
Baking a cake creates a endothermic reaction. When heated, the baking soda/powder reacts, the eggs change form, and everything else follows suit. The baking soda/powder creates the rising of the cake.
A). No. Condensation happens when you take heat out of a gas.
b). No. I'm not sure what transpiration is.
<u>c). Yes.</u> Evaporation happens when you add heat to a liquid.
d). No. Sublimation sometimes happens when you add heat to a solid.
Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
Let's use the mirror equation to solve the problem:

where f is the focal length of the mirror,

the distance of the object from the mirror, and

the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for

by using the numbers given in the text of the problem:



Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.