Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c
Answer:
Explanation:
The mass of the block is 0.5kg
m = 0.5kg.
The spring constant is 50N/m
k =50N/m.
When the spring is stretch to 0.3m
e=0.3m
The spring oscillates from -0.3 to 0.3m
Therefore, amplitude is A=0.3m
Magnitude of acceleration and the direction of the force
The angular frequency (ω) is given as
ω = √(k/m)
ω = √(50/0.5)
ω = √100
ω = 10rad/s
The acceleration of a SHM is given as
a = -ω²A
a = -10²×0.3
a = -30m/s²
Since we need the magnitude of the acceleration,
Then, a = 30m/s²
To know the direction of net force let apply newtons second law
ΣFnet = ma
Fnet = 0.5 × -30
Fnet = -15N
Fnet = -15•i N
The net force is directed to the negative direction of the x -axis
Explanation:
F =(frac{1}{4{pi}{varepsilon}_o}) x (frac {q_1q_2}{r^2})
F =(frac {5 {times} 10 {times} 8 {times} 10}{0.002 {times} 0.002}) x 9 x 10
F = 900N
Answer:
the answer is points wand sun.
Explanation: