![\red{⭐hello my \: friend!}](https://tex.z-dn.net/?f=%20%5Cred%7B%E2%AD%90hello%20my%20%5C%3A%20friend%21%7D)
chlorine's atomic number and mass :
35,453 u
![\blue{⭐have good studies!}](https://tex.z-dn.net/?f=%20%5Cblue%7B%E2%AD%90have%20%20good%20%20studies%21%7D)
☝️follow the rules of brainly!
Answer:
0.004522 moles of hydrogen peroxide molecules are present.
Explanation:
Mass by mass percentage of hydrogen peroxide solution = w/w% = 3%
Mass of the solution , m= 5.125 g
Mass of the hydrogen peroxide = x
![w/w\% = \frac{x}{m}\times 100](https://tex.z-dn.net/?f=w%2Fw%5C%25%20%3D%20%5Cfrac%7Bx%7D%7Bm%7D%5Ctimes%20100)
![3\%=\frac{x}{5.125 g}\times 100](https://tex.z-dn.net/?f=3%5C%25%3D%5Cfrac%7Bx%7D%7B5.125%20g%7D%5Ctimes%20100)
![x=\frac{3\times 5.125 g}{100}=0.15375 g](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%5Ctimes%205.125%20g%7D%7B100%7D%3D0.15375%20g)
Mass of hydregn pervade in the solution = 0.15375 g
Moles of hydregn pervade in the solution :
![=\fraC{ 0.15375 g}{34 g/mol}=0.004522 mol](https://tex.z-dn.net/?f=%3D%5CfraC%7B%200.15375%20g%7D%7B34%20g%2Fmol%7D%3D0.004522%20mol)
0.004522 moles of hydrogen peroxide molecules are present.
Answer: False
Explanation:
Since the given equation is not balanced properly.
Since oxygen and hydrogen atoms are not balanced.
There should be 6 H2O (g) molecules and 14 mol H2 (g)
Answer:
![\boxed{\text{2.6 kPa}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7B2.6%20kPa%7D%7D)
Explanation:
To solve this problem, we can use the Combined Gas Laws:
![\dfrac{p_{1}V_{1} }{T_{1}} = \dfrac{p_{2}V_{2} }{T_{2}}](https://tex.z-dn.net/?f=%5Cdfrac%7Bp_%7B1%7DV_%7B1%7D%20%7D%7BT_%7B1%7D%7D%20%3D%20%5Cdfrac%7Bp_%7B2%7DV_%7B2%7D%20%7D%7BT_%7B2%7D%7D)
Data:
p₁ = 1.7 kPa; V₁ = 7.5 m³; T₁ = -10 °C
p₂ = ?; V₂ = 3.8 m³; T₂ = 200 K
Calculations:
(a) Convert temperature to kelvins
T₁ = (-10 + 273.15) K = 263.15 K
(b) Calculate the pressure
![\begin{array}{rcl}\dfrac{1.7 \times 7.5 }{263.15} & = & \dfrac{p_{2} \times 3.8}{200}\\\\0.0485 & = & 0.0190p_{2}\\p_{2} & = & \textbf{2.6 kPa}\\\end{array}\\\text{The new pressure of the gas is \boxed{\textbf{2.6 kPa}}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Cdfrac%7B1.7%20%5Ctimes%207.5%20%7D%7B263.15%7D%20%26%20%3D%20%26%20%5Cdfrac%7Bp_%7B2%7D%20%5Ctimes%203.8%7D%7B200%7D%5C%5C%5C%5C0.0485%20%26%20%3D%20%26%200.0190p_%7B2%7D%5C%5Cp_%7B2%7D%20%26%20%3D%20%26%20%5Ctextbf%7B2.6%20kPa%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5Ctext%7BThe%20new%20pressure%20of%20the%20gas%20is%20%5Cboxed%7B%5Ctextbf%7B2.6%20kPa%7D%7D%7D)
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as ![K_{c}](https://tex.z-dn.net/?f=K_%7Bc%7D)
For a general chemical reaction:
![aA+bB\rightleftharpoons cC+dD](https://tex.z-dn.net/?f=aA%2BbB%5Crightleftharpoons%20cC%2BdD)
The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:
![2H_2S(g)+O_2(g)\rightleftharpoons 2S(s)+2H_2O(g)](https://tex.z-dn.net/?f=2H_2S%28g%29%2BO_2%28g%29%5Crightleftharpoons%202S%28s%29%2B2H_2O%28g%29)
The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)
![K_c=1.35](https://tex.z-dn.net/?f=K_c%3D1.35)
Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M