Answer:
The kinetic energy for both objects is the same.
Explanation:
While in other cases the kinetic energies of two objects that have different masses might be different depending on their velocities, in this case both the 3 kg book and 5 kg bowling ball have the same kinetic energy.
This is because kinetic energy is calculated using the formula: K = 1/2 * m * v^2, where m represents the mass and v represents the velocity of the object.
Since the book and the bowling ball are sitting still on the floor, their velocities are zero. Hence, when we plug in 0 for velocity into the equation for kinetic energy, we will get that the kinetic energy is 0 for the book and the bowling ball.
Hope this helps!
<span>PV is actually energy. P = F/A force per area, and V = A L, so PV = F L and force times distance is work which is energy. If you have P in N/m^2 and V in m^3, you have Joules, N-m.</span>
Answer:
Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.
Explanation:
Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.
Answer:
16÷8=2
Explanation:
if you run 8 mi an hour than in 16 mi you would have run 2 hours